
ICT159 Lecture Notes Topic 4 – Page 1

Topic 4 – Iteration
FAST WAITING?

 Computers are not just good at following instructions.
 They're good at following instructions FAST.

 But consider how long it takes for a programmer to write these

instructions!
 Even if the programmer knows what they want the computer

to do and has it clear in their mind, the process of typing out
each line of code will still take at least 2–3 seconds.

 Given this limitation, how is it that we can ever take

advantage of the computer's speed?
 It takes millions of times longer to type out instructions for

a computer than it does for the computer to execute these
instructions.

 Therefore the limiting factor in how fast a computer can
operate will always be the typing speed of the
programmer.

 Right..?

OF COURSE NOT!

ICT159 Lecture Notes Topic 4 – Page 2

Looping
 The fact is, almost all computational work involves repetition.
 Consider the following high level generic algorithms:

 Get data

 Process data

 Get next bit of data

 Process data

 Get next bit of data

 Process data

 ...

Compared with:

 while there is still Data left

 Get Data

 Process Data

 Their behaviour is equivalent but clearly the second one is
better. (Why?)

 It is not more efficient code in terms of the computational

work the computer has to do but it's certainly more efficient in
terms of the programmer's time, which is ultimately much
more expensive than the computer's time!

 It also allows for a variable number of data items.

 This type of code which involves controlled repetition is

called iteration or, more commonly, looping.

 This is significant because often the most intensive

computational work involves repeating the same task over and
over for a different set of data each time.

ICT159 Lecture Notes Topic 4 – Page 3

Looping Conditions
 Before we look at some specific iteration statements, we first

need to cover a bit of theory.

 Just like selection statements, boolean expressions

(conditions) play a critical role in loops.

 For selection this related to whether or not a certain set of

statements would be executed:

 if x == y
 do something
 else
 do something different

 However, for iteration these boolean expressions determine

whether a loop will keep going or stop.

 These are looping conditions, e.g.:

 while x == y
 do this

 However, the rules for the boolean expressions used for

looping conditions are exactly the same as for selection
statements like if-else.

 As with if-else remember that if you use the assignment

operator “=” instead of the equivalence test “==” then you will
get incorrect results.

 Since it is a boolean expression, if the result is zero then
the expression will be false otherwise it will be true.

ICT159 Lecture Notes Topic 4 – Page 4

WHILE LOOPS
Overview
 The most commonly used loop in C is the while loop.

 It is called a “pre-test” loop

meaning that it does the test
for its looping condition
before actually beginning
execution of the loop.

 Each time it loops around it

then tests this condition again.
 If the condition is true then

the loop executes again,
otherwise it stops.

The syntax of the while loop is:

while(condition)

{

 /* This is the “body” of the loop.

 These statements get executed

 each time the loop iterates.

 */

}

 Again the curly brackets showing the body of the loop are
only required when there is more than one line of code.

Is condition
true?

iteration
statement

Yes No

ICT159 Lecture Notes Topic 4 – Page 5

while Loop Examples
 We need to write a program to print all even numbers between

10 and 20 inclusive.

 We could do it with 6 print statements, but using a while loop
is much more efficient and flexible.
 We can easily modify the program later on to cater for

different start and end points, particularly if we use
constants where appropriate.

 We will design our program using pseudocode.

 The pseudocode for our solution using a while loop is:

 value = 10
 while value <= 20
 Print value
 value = value + 2

ICT159 Lecture Notes Topic 4 – Page 6

Here is a C program to do the same thing:

#include <stdio.h>

/* Assume that we begin and end with an even

 number.

*/

const int START = 10;

const int END = 20;

int main()

{

 int value = START;

 while(value <= END)

 {

 printf(“%d “, value);

 value += 2;

 }

 /* Print a new line to finish */

 printf(“\n”);

 return(0);

}

 Note the use of the constants.
 If we wanted the program to work between 0 and 1000

instead we could make this change by altering the two
values found easily at the very top of the program.

 Even for this simple program this would be trickier
without using constants.

 But it would be practically impossible without the loop!

ICT159 Lecture Notes Topic 4 – Page 7

A Menu Program with a while Loop
 Now we have the tool necessary to allow our menu program

from the previous topic to keep executing after the user has
made a selection.

 Now the user can enter q to quit.

 We can also add a feature to convert the user's input to lower

case.
 This allows us to simplify our switch-case statements.

/* Menu Program in C demonstrating

 the use of while loops.

*/

#include <stdio.h>

#include <ctype.h>

int main()

{

 char response;

 /* Print menu giving choices */

 printf(“You have three choices.\n”);

 printf(“Enter a for option 1\n”);

 printf(“Enter b for option 2\n”);

 printf(“Enter c for option 3\n”);

 printf(“Enter q to quit.\n”);

 /* Read in user's response and convert

 it to lower case.

 */

 scanf(“%c%*c”, &response);

 response = tolower(response);

ICT159 Lecture Notes Topic 4 – Page 8

 while(response != 'q')

 {

 /* Perform appropriate response */

 switch(response)

 {

 case 'a':

 printf(“You have selected option

 1\n”);

 break;

 case 'b':

 printf(“You have selected option

 2\n”);

 break;

 case 'c':

 printf(“You have selected option

 3\n”);

 break;

 default:

 printf(“You haven't selected a

valid option.\n”);

 }

 /* Re-display menu */

 printf(“\n”);

 printf(“You have three choices.\n”);

 printf(“Enter a for option 1\n”);

 printf(“Enter b for option 2\n”);

 printf(“Enter c for option 3\n”);

 printf(“Enter q to quit.\n”);

 scanf(“%c%*c”, &response);

 response = tolower(response);

 }

 return(0);

}

ICT159 Lecture Notes Topic 4 – Page 9

FOR LOOPS
Fixed Iteration while Loops
 A while loop is designed for situations where you don't know

how many times the loop is supposed to repeat.
 The loop will just keep on going (possibly indefinitely) until

the specified condition becomes true.

 However, it is very easy to write a while loop that executes a

fixed number of times.

 To do this we need a variable called a “counter” that counts

the number of times the loop has executed.
 We also need to know the number of times the loop is

supposed to execute.

Here is a simple algorithm for this:

 count = 0
 while count < MAX
 process data
 count = count + 1

 Note the use of count and MAX here, the loop counter and

maximum number of iterations respectively.
 Also note that we initialise count to zero and have the loop

repeat only while count is less than MAX.

 We could start count at one and loop while it is less than or

equal to MAX but it is conventional (and often useful) to start
at zero instead.

ICT159 Lecture Notes Topic 4 – Page 10

for Loop Syntax
 However, because fixed-iteration loops are such a common

requirement, most programming languages include a special
looping construct specifically to do this.

 These are called for loops and they do exactly the same thing

as the example above with the while.

The structure of a for loop is:

Is condition
true?

Iteration
statement

Yes No
Increment counter

initialisation

ICT159 Lecture Notes Topic 4 – Page 11

for Loop Syntax
 The syntax of the for loop is:

for(initialisation; condition; increment)

{

}

Note:

 There are three parts, separated by semicolons.

 The initialisation part is performed just before the loop
begins the very first time.

 It is most often concerned with zeroing the counter
variable e.g., count = 0

 The condition part is the loop condition which determines

whether the loop keeps going (e.g., count < MAX).

 This is tested before the loop begins executing making
for a pre-test loop just like while.

 It is also tested for before beginning each subsequent
iteration (just like while).

 The increment part is executed after the loop has finished

executing the code between the curly brackets each time the
loop iterates.

 It is normally used to increment a counter variable

 e.g., count = count + 1 or, more conventionally,
count++

 Note the increment part is executed before the loop
condition is re-evaluated.

ICT159 Lecture Notes Topic 4 – Page 12

for Loop Example
Here is a code fragment to print out all one hundred numbers
between zero and 99 inclusive, separated by spaces:

for(num = 0; num < 100; num++)

{

 printf(“%d “, num);

}

Note:
 Curly brackets again aren't required if there is only one line

of code that makes up the loop body (however, you could
still use them if you wanted to).

 The initialisation part is nearly always of the form:
 counter = 0

 The condition part is always a boolean expression (just as for
while loops and if-else statements etc.).

 It is nearly always of the form:
 counter < MAX

 The increment part is nearly always of the form:
 counter++

 Therefore the code uses the convention that if you have x
values to process, you start with the counter at zero and loop
while it is less than x.

ICT159 Lecture Notes Topic 4 – Page 13

Another for Loop Example
/* Find all even numbers between user-specified

 start and end points inclusive */

#include <stdio.h>

int main()

{

 int startval, endval;

 int value;

 printf(“Enter start value: “);

 scanf(“%d%*c”, &startval);

 printf(“Enter end value: “);

 scanf(“%d%*c”, &endval);

 for(value = startval; value <= endval; value++)

 {

 if((value % 2) == 0)

 {

 printf(“%d ”, value);

 }

 }

 /* Print a new line to finish */

 printf(“\n”);

 return(0);

}

 Note the use of the mod operator %: if there is no remainder
when dividing by 2, the number must be even.

ICT159 Lecture Notes Topic 4 – Page 14

DO-WHILE LOOPS
 Both while and for loops are pre-test loops where the loop

condition is tested before beginning execution of the loop.

 However, sometimes a post-test loop that tests this condition

after the execution of the loop body is more appropriate.
 This is useful where you know that the loop should

execute at least once.

 In C this type of loop is called a do-while loop.

ICT159 Lecture Notes Topic 4 – Page 15

The syntax of a do-while loop is:

do

{

 /* Loop code in here */

} while(condition);

 The loop condition is a boolean expression, just like the other

types of loop.
 Also note the semicolon at the end.

 Compared to while and for loops, do-while loops tend to be

less common.

 However “menu” programs that need to loop around to allow

the user to continue to select options must loop at least once
(to give the user at least one choice).

 We will now look at the menu program from above, using a
do-while loop.

ICT159 Lecture Notes Topic 4 – Page 16

/* Menu Program in C demonstrating

 the use of do-while loops.

*/

#include <stdio.h>

#include <ctype.h>

int main()

{

 char response;

 do

 {

 /* Print menu giving choices */

 printf(“You have three choices.\n”);

 printf(“Enter a for option 1\n”);

 printf(“Enter b for option 2\n”);

 printf(“Enter c for option 3\n”);

 printf(“Enter q to quit.\n”);

 /* Read in user's response and convert

 it to lower case.

 */

 scanf(“%c%*c”, &response);

 response = tolower(response);

 /* Perform appropriate response */

 switch(response)

 {

 case 'a':

 printf(“You have selected option

 1\n”);

 break;

 case 'b':

 printf(“You have selected option

 2\n”);

ICT159 Lecture Notes Topic 4 – Page 17

 break;

 case 'c':

 printf(“You have selected option

 3\n”);

 break;

 case 'q':

 break;

 default:

 printf(“You haven't selected a

valid option.\n”);

 }

 } while(response != 'q');

 return(0);

}

 If you compare this to the while example you'll see it's both
shorter and more logical.

 It is no longer necessary to print out the menu and read in
user input in two separate places.

ICT159 Lecture Notes Topic 4 – Page 18

WHICH LOOP WHEN?
 Once you've identified that you need an iterative structure in

an algorithm, the next step is to identify which type of loop is
required.

 The following table summarises the properties of each type of

loop:

Loop Property Pre-test

(while)
Post-test
(do-while)

Fixed Iteration (for)

Condition tested Before loop
begins

After each
iteration

Before loop begins

Min. No. Iterations Zero One Zero
Special Features Nil Nil Initialisation,

Automatic Increment

 Using these properties, it becomes possible to apply some

simple rules in attempting to select the appropriate loop.

1. Do you know how many times the loop should repeat?
 Or, more accurately, is the number of times it should

repeat known immediately before the loop is to begin?
 If so, then a for loop should be chosen.
 This is common where there is a fixed or known amount

of data that needs to be processed.

2. Does the loop need to execute at least once?
 If so, then a do-while loop is required.
 This is common where there is data or some input from

the user etc. that must be received and processed before
the decision about whether the loop should repeat can be
made.

 An example for this might be a menu program.

ICT159 Lecture Notes Topic 4 – Page 19

3. For anything else, a while loop is probably appropriate.

 Specifically, there often cases where there may be zero or
more pieces of data to be processed.

 The actual amount is not known and since there could be
no data at all to be processed, a while loop that may not
even execute once is appropriate.

 An example of this that we will see later in the unit is
working with data from files:

 When opening a file and attempting to read data out of
it, the file may contain many records, each of which
will need to be processed, or simply be empty
meaning there is nothing to be processed.

 Despite the above guidelines, there is often a fair bit of

flexibility in the use of these loops.
 For example, a while loop can be used in almost any situation.

 One technique that involves this is known as a primed
while loop.

 This applies where the data that is used in the loop
condition is obtained before the beginning of the loop,
thus allowing a while loop to emulate a do-while.

 The menu program described previously on Page 7 is an
example of this.

 However, most of the time it is probably better to try and use

the type of loop that is most appropriate to the requirements of
the algorithm.

ICT159 Lecture Notes Topic 4 – Page 20

NESTED LOOPS
 In the previous topic we saw how if-else statements could be

“nested” within one another.
 This is also possible with loops and can be very powerful.

 However, it is less common than nesting ifs and can also be

conceptually more difficult so we only cover the basics in this
unit.

 If you think of one loop within another then for each single

iteration of the outer loop, the inner loop will have to complete
all of its iterations.

 This leads to a “slow” loop (the outer) and a “fast” loop (the

inner).
 The slow outer loop must wait for the fast inner loop to

complete each time.

 Consider a hypothetical simplified calendar year made up of

12 months, each of 31 days.
 An outer loop will loop for each of the months and the

inner loop for each day of each month.

 Here is an algorithm involving nested loops to print a year's

calendar using this scheme:

 for month = 1 to 12
 print “Month ”, month
 for day = 1 to 31
 print day

ICT159 Lecture Notes Topic 4 – Page 21

Here is a slightly enhanced version of the above algorithm
written in C.

#include <stdio.h>

/* Use these constant values for simplicity */

const int NUM_MONTHS = 12;

const int NUM_DAYS = 31;

int main()

{

 int month, day;

 /* Outer “slow” loop iterates for each

 month */

 for(month = 1; month <= NUM_MONTHS; month++)

 {

 printf(“Month %d\n”, month);

 for(day = 1; day <= NUM_DAYS; day++)

 {

 /* Inner “fast” loop iterates for

 each day of each month */

 printf(“%d ”, day);

 /* Print a blank line every

 seven days */

 if((day % 7) == 0)

 printf(“\n”);

 }

 printf(“\n\n”);

 }

 return(0);

}

ICT159 Lecture Notes Topic 4 – Page 22

GETTING OUT AND
GOING BACK
The break Statement
 We've already seen the break statement used when writing

switch-case statements.
 There it “breaks out” of the switch-case rather than letting

execution fall through to the next case.

 However, break has another use when it comes to loops.
 A break statement anywhere in a loop will cause the loop to

stop and execution will continue on from the end of the loop.
 In other words, you can also “break out” of a loop.

 Note that each break statement will break out of only the
inner most structure (i.e., switch-case or loop).

 This is generally used in one of three ways.

 Firstly there may be one main condition where you want
the loop to stop but also one or more other less significant
conditions too.

 Here you can use if statements to test for these
conditions and break out of the loop.

 Secondly it may necessary (or at least much easier) to
structure your loop such that you can get out of the loop at
any point rather than at the start (while/for) or end (do-
while).

 Again, you can use if statements to exit the loop at any
point, although generally it's better to have fixed exit
points if you can.

ICT159 Lecture Notes Topic 4 – Page 23

 Finally sometimes the main loop condition is set to a boolean

expression which is always true and break statements take
over completely.

while(1)

{

 /* do things */

 if(condition)

 break;

}

 This works because in C there is no boolean type and any

expression that evaluates non-zero is considered true (zero is
false).

 Therefore while(1) will always be true and an infinite loop
results.

 Instead the condition is moved to the if statement and break is
used to exit the loop.

 This technique is very much in the C idiom and actually quite

common so you do need to be aware of it.
 However, it can easily become confusing so it is usually best

to avoid it since it is mostly not necessary.

ICT159 Lecture Notes Topic 4 – Page 24

This example of break is code that calculates the sum of a fixed
number (MAX) of positive integers.

However, it allows the user to enter less than MAX numbers and
tell the program to stop adding up by entering a negative
number.

for(count = 0; count < MAX; count++)

{

 printf(“Enter number: “);

 scanf(“%d”, &num);

 /* If the user enters a negative,

 break out of the loop */

 if(num < 0)

 break;

 sum += num;

}

printf(“Sum is: %d”, sum);

 It is possible to re-write this code without the use of a break
statement but it becomes more complex and harder to
understand.

ICT159 Lecture Notes Topic 4 – Page 25

The continue Statement
 The continue statement is similar to break except it takes

execution back to the start of the loop.

 This can sometimes be useful to avoid writing complicated

code to skip around parts of your loop and go back to the start.
 However, like break it can become confusing if you are not

very careful.

The following code fragment adds up all the odd numbers
between 1 and 100.

for(i = 1; i < 100; i++)

{

 /* Skip back to the start of the loop if

 the number is even.

 */

 if(i % 2 == 0)

 continue;

 sum = sum + i;

}

printf("The sum of all odd numbers is %d",

sum);

 This code wouldn't be too difficult to modify to avoid using
the continue statement and would arguably be easier to
understand without the continue!

ICT159 Lecture Notes Topic 4 – Page 26

When to use break and continue?
 Both break and continue can be useful programming tools

because they provide greater flexibility in determining the
flow of your program.

 However, this great strength is also a great weakness.

 By limiting the way code execution can flow, programmers

generally write better, easier to understand code.
 Code execution should follow tightly controlled, orderly

paths that are easy to analyse.

 Some strongly believe that all loops should only have one

entry point and one exit point and few would disagree that this
is by far the best way to structure your programs.

 The problem is, this is not always easy to do.

 So break and continue can make it much harder to work out

how a piece of code is supposed to behave.
 Hence they need to be used extremely carefully and probably

shouldn't be used very often.

 So when should you use them?

 My advice is not to use break and continue in your every day

programming.
 However, if you are having trouble structuring your code to do

what you want, ask yourself “Would break or continue make
things simpler here?”

 If the answer is “yes”, then use it but carefully comment your

code!

ICT159 Lecture Notes Topic 4 – Page 27

SUMMARY
 Iteration or looping allows us to take advantage of a

computer's speed in processing large amounts of data in a
repetitive way.

 Loops have conditional (boolean) expressions that decide

whether the loop will continue to execute.

 The while loop is very common and is a pre-test loop in that

the test for whether it should execute is done at the start of the
loop.

 The for loop is essentially the same as a while loop but it has
special provisions for looping a fixed number of times.

 The do-while loop is a post-test loop and tests its looping
condition at the end of the loop.

 The break and continue constructs allow you to modify the

flow of loop code, however, they should be used very
sparingly as they can often make it very hard to determine
who a piece of code behaves.

